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suggest that an Optical Soliton may be modeled by a propagating 

Delta Function. 

  

Keywords: Optical Temporal Solitons, Nonlinear Phase, Group 

Velocity Dispersion, Nonlinear Optics, Nonlinear Schrödinger 

Equation, Infinitesimal, Delta Function, Fourier Transform, 

Laplace Transform, Ultrashort Light Pulses, Ultrafast Optics, 

Optical Catastrophe, Free Electron Laser. 

 

2010 Physics Astronomy Classification Scheme 42.81.Dp; 

42.55.Wd; 42.60.Fc; 42.65.Jx; 42.65.Re; 42.65.Tg;  

 

2000 Mathematics Subject Classification 35C08; 35Q51; 37K40; 

74J35; 76B25; 35K55; 78A60;26E35; 26E30; 26E15; 26E20; 26A06; 26A12; 

03E10; 03E55; 03E17; 03H15; 46S20; 97I40; 97I30; 

 1



Gauge Institute Journal                                                                                              H. Vic Dannon  

Contents 

Optical Solitons 

1. Non-Linear Phase Function 

2. Non-Linear Schrödinger Equation 

3. Dispersion and phase modulation of a Gaussian pulse 

4. Non-Linear Schrödinger equation for Solitons  

5. The Soliton’s Envelope Equation  

6. The Fundamental Soliton solution 

Delta Function 

7. Hyper-real Line 

8. Hyper-real Integral 

9. Delta Function 

10. The Fourier Transform 

11. The Laplace Transform 

12. Pulse Compression and Delta 

13. Soliton and Delta Function 

References

 2



Gauge Institute Journal                                                                                              H. Vic Dannon  

Optical Solitons 

Optical Solitons are pulses enveloping an optical frequency carrier 

that keep their shape as they propagate through the optical fibers. 

A wave packet fed into an optical fiber, evolves into a soliton if its 

group velocity dispersion is balanced by its self-phase modulation 

in the glass.     

That balance is attained when the frequency ω  of the carrier 

under the pulse, remains the same before the peak of the pulse, 

and beyond the peak of the pulse. 

The frequency ω , is the time derivative of the Non-linear phase 

function of the pulse in the optical fiber. 

the phase function is necessary to obtain an expression for the 

wave packet that is used to derive the Non-Linear Schrödinger 

Equation, the Soliton’s equation  

The phase function depends on the frequency , and on the 

refractive index , where  is the Amplitude of the wave 

packet, and may be approximated by a Taylor polynomial in the 

variables , and .  

ω

0( , )n Eω 0E

ω 0E

That approximation is nowhere to be found in the literature. 

authors seem to know about Taylor polynomials in one variable, 

but not in two variables. 
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Consequently, the literature has no substantiated derivation of 

the Non-Linear Schrödinger Equation. 

We aim to show that Solitons may be represented by a Delta 

function, but this requires that  generation of Solitons be clearly 

understood. 

In section 1, we obtain the Taylor approximation for the nonlinear 

phase function, and the expression for the wave packet  

In section 2, we derive the Non-Linear Schrödinger equation. 

In section 3, we discuss dispersion and phase modulation of a 

Gaussian pulse, in order to gain insight about pulses in general, 

and solitons in particular. 

In section 4, we obtain the Non-linear Schrödinger equation 

modified for solitons, and in section 5 the equation for the Soliton’s 

envelope equation. 

in section 6, we present the known fundamental Soliton solution, 

in a form that will enable us to establish that it may be 

represented by a Delta function. 

We do that in the second part of the paper, in sections 7-13.  
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1.  

Non-Linear Phase Function 
 

Consider a wave packet of light frequencies propagating in an 

optical fiber, 

 . ( )( , ) ( ) i t zz t A e d
ω

ω β

ω

ψ ω
=∞

−

=−∞

= ∫ ω

ω

ω

The wave packet may be written as  

0 0( )( , ) ( )i t i t z i tz t e A e e d
ω

ω ω β ω

ω

ψ ω
=∞

− −

=−∞

= ∫  

Then, it is an envelope   modulating a 

carrier with frequency . 

0( )( ) i t z i tA e e d
ω

ω β ω

ω

ω
=∞

−

=−∞
∫

0ω

The phase function is 

0t zω β− . 

In the air,  is a constant .  In the optical fiber,  is  a 

nonlinear function of , and of the light intensity . We aim to 

express  in terms of , and I . 

β 0β β

ω I

β ω

Let E , and B  be the electromagnetic fields of the wave packet. 

By Faraday’s Law, , tE B∇× = −∂
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( ) ( tE B∇× ∇× = ∇× −∂ )

B

, 

2( ) tE E∇ ∇ ⋅ −∇ = −∂ ∇× , 

                                                     0( )t M Hμ= −∂ ∇× +

Assuming a scalar dielectric coefficient ,  and 0 rε ε ε= E
ρ
ε

∇ ⋅ = . 

Assuming no electric charges, , and . 0ρ = 0E∇ ⋅ =

Assuming no magnetic charges, , and 0M =

2
0 tE Hμ−∇ = − ∂ ∇×  

By Ampere’s Law, . tH J∇× = + ∂ D

D

r

Assuming  no current, ,  , and 0J = tH∇× = ∂

2 2
0 tE Dμ∇ = ∂  

                                                                     2
0 0( )t rEμ ε ε= ∂

                                                                     2
0 0 ( )t rEε μ ε= ∂

Assuming a Plane Electromagnetic wave propagating in the z  

direction, , and ( , ), 0, 0E E z t⎡ ⎤= ⎢ ⎥⎣ ⎦

2 2
0 0 ( )z tE Eε μ ε∂ = ∂ . 

The refractive index is 
 rn ε=  , 
and 

0

0

n
c

ω
β = , 

where  
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0
0 0

1
c

ε μ
=  

is the speed of the light in the vacuum. 

Since 
2

r nε = , 
and since  

1rε χ= + , 

where  is the susceptibility of the optical fiber,  we have χ

2 1n χ= + . 

In a Non-Linear Optical Medium,  may depend on powers of  

the electric field E  

Eχ

(1) (2) 2 (3) 3 ( )... N NE E E Eχ χ χ χ χ= + + + + E

E

3

, 

where the coefficients  are very small. In Optical 

Fibers, we put  , and assume a cubic nonlinearity  

(1) (2) ( ), ... Nχ χ χ

(2) 0χ =

(1) (3) 3E Eχ χ χ= + . 
Therefore,   

2 (1 )n E Eχ= +  

                                                  . (1) (3) 3(1 )E Eχ χ= + +

Substituting a harmonic Electric field 

0( , )cos( )E E z t t kzω= − , 

2 (1) (3) 3
0 0 0cos( ) (1 ) cos( ) cos ( )n E t kz E t kz E t kzω χ ω χ ω− = + − + −  

Since , 0 0E ≠
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2 (1) (3) 2
0cos( ) (1 )cos( ) cos ( )n t kz t kz E t kzω χ ω χ ω− = + − + −3  

Now, 

3 ( )
3

1
cos ( ) ( )

2
i wt kz i wt kzt kz e eω − − −− = + ( ) 3  

                     3 ( ) ( ) ( ) 3 ( )
3

1
( 3 3

2
i wt kz i wt kz i wt kz i wt kze e e e− − − − −= + + + )−  

In Optical Fibers, the third harmonics 3(  is negligible, and  )wt kz−

3 ( )
3

3
cos ( ) ( )

2
i wt kz i wt kzt kz e eω − − −− ≈ + ( )  

                                              3
cos( )

4
t kzω= −  

Substituting into the equation for , 2n

2 (1) (3) 2
0

3
cos( ) (1 )cos( ) cos( )

4
n t kz t kz E tω χ ω χ ω− = + − + − kz  

Since  does not vanish identically, cos( )t kzω −

2 (1) (
0

3
(1 )

4
n Eχ χ= + + 3) 2 . 

Denoting 
(1)

01 nχ+ ≡ , 
we have 

1
(3) 2

2
02

0 0

3
1

4
n

E
n n

χ⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
. 

Since  is very small,  (3)χ
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(3)

2
02

0

3
1

8
E

n

χ
≈ + . 

Thus, 
(3)

2
0 0

0

3
8

n n E
n
χ

≈ + . 

The dependence of n  on the frequency ω  is implicit, and we shall 

expand  

0( , )n n Eω=  

in a Taylor Polynomial of the second order about the point  

0ω ω= ,          . 0 0E =

0 0
0 0

0 0 0
00 0

( , ) ( , 0) ( )

E E

n n
n E n E

Eω ω ω ω
ω ω ω ω

ω = =
= =

∂ ∂
= + − +

∂ ∂ 0 +  

0 0 0
0 0 0

2 2
2 2

0 0 02 2
0 00 0 0

1 1
( ) ( )

2 2
E E E

n n
E E

E Eω ω ω ω ω ω
ω ω ω ω

ωω = = =
= = =

∂ ∂ ∂
+ − + − +

∂ ∂∂ ∂

2

0
n

 

Here, 

0 0
0 0

(3)

0
0 00 0

3
0

4
E E

n
E

E nω ω ω ω

χ
= =
= =

∂
= =

∂
, 

0 0
0 0

2 (3)

0
0 0

0 0

3
0

4
E E

n
E

E nω
ω ω ω ω

χ
ω = =

= =

⎛ ⎞∂ ⎟⎜ ⎟= ∂ =⎜ ⎟⎜ ⎟⎜∂ ∂ ⎝ ⎠
 

0
0

2 (

2
00 0

1 3
2 8

E

n
nE ω ω

χ

=
=

∂
=

∂

3)

 

Therefore, 
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0 0
0 0

2 (
2 2

0 0 0 02
00 0

1 3
( , ) ( ,0) ( ) ( )

2 8
E E

n n
n E n E

nω ω ω ω

χ
ω ω ω ω ω ω

ω ω= =
= =

∂ ∂
= + − + − +

∂ ∂

3)

0  

Multiplying by 0
0

0

k
c

ω
= ,  

0 0
0 0 0 0

2
1 22

2 (3)
2 20 0

0 0 0 0 0 02
0 0( , ) 0 0

( ) ( )1 3
( , ) ( , 0) ( ) ( )

2 8
E E E

k n k n
k n E k n E

c nω ω ω ω
β ω β

β ββ βω ω

ω χ
ω ω ω ω ω ω

ω ω= =
= =

∂ ∂≡ ≡∂ ∂

∂ ∂
= + − + − +

∂ ∂
0

0  

Denoting  
(3)

22
0 0 0

3
4

n
c n

χ

ε
≡ , 

we have, 

2 2
0 0 1 0 2 0 0 0 0 2

1 1
( , ) ( ) ( )

2 2
E n n Eβ ω β β ω ω β ω ω ω ε= + − + − + 0 . 

Denoting 

2
0 0 0 0

1
2

I c n Eε≡ , 

the refractive index is 

0 2( , )n I n n Iω ≈ + , 
and  

2 0
0 1 0 2 0 2

0

1
( , ) ( ) ( )

2
I n

c

ω
β ω β β ω ω β ω ω= + − + − + I . 

Therefore, the phase function is 

2 0
0 0 1 0 2 0 2

0

1
( ) ( )

2
t n

c

ω
ω β β ω ω β ω ω

⎡ ⎤
⎢ ⎥− + − + − +⎢ ⎥⎣ ⎦

I z , 

and the wave packet is 
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2 0
0 0 1 0 2 0 2

0 0

1
[ ( ) ( ) ]

2( , ) ( )
i t n I z

i t c i tz t e A e e d

ωω ω β β ω ω β ω ω
ω ω

ω

ψ ω

⎛ ⎞=∞ ⎟⎜ ⎟− + − + − +⎜ ⎟⎜ ⎟⎜− ⎝ ⎠

=−∞

= ∫ ω . 

 

This wave packet leads to the Non-Linear Schrödinger equation.   
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2.  

Non-Linear Schrodinger Equation 

 

The wave packet 

2 0
0 0 1 0 2 0 2

0 0

1
[ ( ) ( ) ]

2( , ) ( )
i t n I z

i t c i tz t e A e e d

ωω ω β β ω ω β ω ω
ω ω

ω

ψ ω

⎛ ⎞=∞ ⎟⎜ ⎟− + − + − +⎜ ⎟⎜ ⎟⎜− ⎝ ⎠

=−∞

= ∫ ω  

                    
2 0

1 0 2 0 2
0 0 0

0

1
( )( ) ( )

( ) 2

( , )

( )
i t z z n Iz

i t z c

E z t

e A e

ωω β ω ω β ω ω
ω β

ω

ω ω

⎛ ⎞=∞ ⎟⎜ ⎟− − − − −⎜ ⎟⎜ ⎟⎜− ⎝ ⎠

=−∞

= ∫ d  

is an envelope 

2 0
1 0 2 0 2

0

1
( )( ) ( )

2
0( , ) ( )

i t z z n Iz
cE z t A e d

ωω β ω ω β ω ω

ω

ω ω

⎛ ⎞=∞ ⎟⎜ ⎟− − − − −⎜ ⎟⎜ ⎟⎜⎝ ⎠

=−∞

= ∫  

modulating the carrier . 0 0( )i t ze ω β−

We show that the envelope satisfies the Non-Linear Schrodinger 

Equation. 

2
0 1 0 2 0 0 0 0 2 0 0

1 1
0

2 2z t ttE E i E i n n E Eβ β ω ε∂ + ∂ − ∂ + =  

2 0
1 0 2 0 2

0

1
( )( ) ( )

2
0( , ) ( )

i t z z n Iz
c

z zE z t A e d

ωω β ω ω β ω ω

ω

ω ω

⎛ ⎞=∞ ⎟⎜ ⎟− − − − −⎜ ⎟⎜ ⎟⎜⎝ ⎠

=−∞

∂ = ∂ ∫  
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2 0

1 0 2 0 2
0

1
( )( ) ( )

2 2 0
1 0 2 0 2

0

1
( ) [ ] [ ]

2

i t z z n Iz
ci A e n I d

c

ωω β ω ω β ω ω

ω

ω
ω β ω ω β ω ω

⎛ ⎞=∞ ⎟⎜ ⎟− − − − −⎜ ⎟⎜ ⎟⎜⎝ ⎠

=−∞

ω
⎡ ⎤
⎢ ⎥= − − + − +⎢ ⎥⎣ ⎦

∫  

2 0
1 0 2 0 2

0

0

1
( )( ) ( )

2
1 0( ) ( )

t

i t z z n Iz
c

E

i A e

ωω β ω ω β ω ω

ω

β ω ω ω

⎛ ⎞=∞ ⎟⎜ ⎟− − − − −⎜ ⎟⎜ ⎟⎜⎝ ⎠

=−∞

∂

= − −∫ dω  

    
2 0

1 0 2 0 2
0

0

1
( )( ) ( )

22 2
2 0

1
( ) ( )

2

tt

i t z z n Iz
c

E

i i A e d

ωω β ω ω β ω ω

ω

β ω ω ω

⎛ ⎞=∞ ⎟⎜ ⎟− − − − −⎜ ⎟⎜ ⎟⎜⎝ ⎠

=−∞

∂

+ −∫ ω  

    
2 0

1 0 2 0 2
0

2
00 0 2 0

1
( )( ) ( )

20
2

0

1
2

( )
i t z z n Iz

c

En n E

i n I A e d
c

ωω β ω ω β ω ω

ω

ω

ω
ω ω

⎛ ⎞=∞ ⎟⎜ ⎟− − − − −⎜ ⎟⎜ ⎟⎜⎝ ⎠

=−∞

− ∫  

 

Therefore, 

2
0 1 0 0 0 0 0 2 0 0E

1 1
2 2z t ttE E i E i n n Eβ ω ε∂ = − ∂ + ∂ − .  

 

We proceed to explore the possibility of a Soliton solution for the 

Non-Linear Schrödinger equation.  

To that end, we follow the propagation of a Gaussian pulse 

through the optical fiber. 
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3.  

Dispersion, and Phase Modulation 
of a Gaussian Pulse  
 

Since the wave packet is 

2 0
0 0 1 0 2 0 2

0 0

1
[ ( ) ( ) ]

2( , ) ( )
i t n I z

i t c i tz t e A e e d

ωω ω β β ω ω β ω ω
ω ω

ω

ψ ω

⎛ ⎞=∞ ⎟⎜ ⎟− + − + − +⎜ ⎟⎜ ⎟⎜− ⎝ ⎠

=−∞

= ∫ ω

dω

, 

we have, 

(0, ) ( ) i tt A e
ω

ω

ω

ψ ω
=∞

=−∞

= ∫ . 

Therefore,  

1
( ) (0, )

2

t
i t

t

A t ωω ψ
π

=∞
−

=−∞

= ∫ e dt . 

Let   be a Gaussian pulse enveloping the carrier , (0, )tψ 0i te ω

2

2
02(0, ) t

t

i tt Ce eσ ωψ
−

= . 

Then, 
2

2
021

( )
2

t

tt
i t i t

t

A Ce eσ ω ωω
π

=∞ −
−

=−∞

= ∫ e dt  
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2

02

1
2 ( )

21
2

t

tt i t

t

C e
ω ω

σ

π
dt

⎡ ⎤
=∞ ⎢ ⎥− − −⎢ ⎥

⎢ ⎥⎣ ⎦

=−∞

= ∫  

                                                   

2
2 2

0 0
1 1

( ) ( )
2 21

2

t t
t

tt i

t

C e
σ ω ω σ ω ω

σ

π

⎡ ⎤=∞ ⎢ ⎥− − − − −⎢ ⎥⎣ ⎦

=−∞

= ∫ dt  

                                                    

2

2 20 0

1 1( ) ( )2 2
1
2

t t
t

tt i

t

C e dt e
σ ω ω σ ω ωσ

π

⎡ ⎤=∞ ⎢ ⎥− − − − −⎢ ⎥⎣ ⎦

=−∞

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠
∫  

Put 

0
1

( )
2 t

t

t
iτ σ ω

σ
= − − ω  

1

t

d dτ
σ

= t  

Then, 

2 2
0

1 1
( )

2 2

2

1
( )

2
t

tA C e d e
τ

τ σ ω

τ

π

ω σ τ
π

=∞
− − −

=−∞

= ∫
2ω
 

                                 
2 2

0
1

( )
2

1

2

t

tC e
σ ω ω

σ
π

− −
= . 

Denoting  

0ω ω ω− ≡ , 

2 21
2

1
( )

2

t

tA C e
σ ω

ω σ
π

−
=  

The wave packet is 
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2 0
0 0 1 0 2 0 2

0 0

1
[ ( ) ( ) ]

2( , ) ( )
i t n I z

i t c i tz t e A e e d

ωω ω β β ω ω β ω ω
ω ω

ω

ψ ω

⎛ ⎞=∞ ⎟⎜ ⎟− + − + − +⎜ ⎟⎜ ⎟⎜− ⎝ ⎠

=−∞

= ∫ ω  

               
0 2

0 0 2 1 0 2 0
0

1
( )( ) ( )

2( )
i t z n Iz i t z z

ce A e

ω ωω β β ω ω β ω ω

ω

ω ω

⎛ ⎞ ⎛ ⎞=∞⎟⎜ ⎟⎜⎟− − − − − − ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜⎝ ⎠ ⎝

=−∞

= ∫ d⎠  

              
0 2

0 0 2 1 2
0

1
( )

2( )
i t z n Iz i t z z

ce A e

ω ωω β β ω β ω

ω

ω ω

⎛ ⎞ ⎛ ⎞=∞⎟⎜ ⎟⎜⎟− − − − ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜⎝ ⎠ ⎝

=−∞

= ∫ d⎠  

Plugging in the  of a Gaussian Pulse, ( )A ω

0 22 20 0 2 1 2
0

11 ( )
22

1
( , )

2

t
i t z n Iz i t z z

c
tz t C e e e d

ω ωω β β ω β ωσ ω

ω

ψ σ
π

⎛ ⎞ ⎛ ⎞=∞⎟⎜ ⎟⎜⎟− − − − ⎟⎜ ⎜⎟ − ⎟⎜ ⎜⎟ ⎟⎜⎝ ⎠ ⎝

=−∞

= ∫ ω⎠  

   
( ) ( )0 2 20 0 2 2 1

0

1
( )

2
1

2

t
i t z n Iz i z i t zc

tC e e

ω ωω β ω σ β β ω

ω

σ ω
π

⎛ ⎞ =∞⎟⎜ ⎟− −⎜ ⎟ − + + −⎜ ⎟⎜⎝ ⎠

=−∞

= ∫ d . 

The exponent of the integrand is 

( )2 2
2 1

1
( )

2 t i z i t zω σ β β ω− + + − =  

      ( ) ( )
21 1 2

2 2 12 2
2 2 1 2

2

ˆ

( )1 1
( )

2 2t t
t

t z
i z i i z t z

i z

ω

β
ω σ β σ β β

σ β

−⎛ ⎞ −⎟⎜ ⎟⎜= − + − + − −⎟⎜ ⎟⎜ ⎟⎜ +⎝ ⎠
 

Denote 

( ) ( )
1 1

2 22 2
2 2ˆ ( )t ti z i i z t zω ω σ β σ β β

−
= + − + − 1  

Then,  

( )
1

2 2
2ˆ td i zω σ β= + dω , 
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and the wave packet is 

( )
2

10 20 0 2 2
0 2

( )1ˆ 11 ˆ 22 22
2

ˆ

2

ˆ( , )
2

t

t z
i t z n Iz

c i
t t

C
z t e i z e d e

βω ωω β ω σ β

ω

π

ψ σ σ β ω
π

⎛ ⎞ −=∞⎟⎜ −⎟− −⎜ ⎟ −−⎜ ⎟⎜ +⎝ ⎠

=−∞

= + ∫ z  

            ( )
2

10
0 0 2 2

0 2

( )11
22 2

2
t

t z
i t z n Iz

c i
t tC e i z e

βω
ω β

σ βσ σ β

⎛ ⎞ −⎟⎜ −⎟− −⎜ ⎟ −⎜ ⎟⎜ +⎝ ⎠= + z  

Simplifying, 

( )

( )

( )

1
2 2

2

1 1
2 42 2

2 2

1 t

t t

i z

i z z

σ β

σ β σ β

−
=

+ + 2 2

 

                      

( )
( )

2
2

1
21 arctan

4 2 2 2
21

4 2 2 2
2

1
t

z
i

t

t

z e

z

β

σσ β

σ β

⎛ ⎞⎟⎜ ⎟⎜− ⎟⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜= +⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠+

⎟  

                      

( )

2
2

1
arctan

2

1
4 2 2 4

2

t

z
i

t

e

z

β

σ

σ β

⎛ ⎞⎟⎜ ⎟⎜− ⎟⎜ ⎟⎜ ⎟⎝ ⎠
=

+

 

2 2
21 2

12 4 2 2
2 2

( )1 1
( )

2 2
t

t t

t z i z
t z

i z ze e

β σ β
β

σ β σ β

− −
− −

+ +=
−

 

               

2
2 22

1 14 2 2 4 2 2
2 2

1 1
( ) ( )

2 2
t

t t

z
t z i t z

z ze e

σ β
β β

σ β σ β

−
− −

+ +=  

Hence, 
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( )

2 2
2 2220

1 10 0 2 4 2 2 4 2 2
0 2

1
arctan 1 12 ( ) (

2 2

1
4 2 2 4

2

( , )
t

t
t t

z
i z

t z i t zi t z n Iz
c z

t

t

e
z t C e e e

z

β
σ βω β βσω β

σ β σ βψ σ

σ β

⎛ ⎞⎟⎜ ⎟⎜− ⎟⎛ ⎞ −⎜ ⎟⎟⎜ ⎜ ⎟ − −⎟ ⎝ ⎠− −⎜ ⎟⎜ ⎟⎜ + +⎝ ⎠=

+

2

)
z

 

          

( )

2
2

14 2 2 20 2 2
2 0 0 2 12 4 2 2

0 2

( ) 1 1
arctan ( )

2 2

1
4 2 2 4

2

t

t
t t

t z z z
z i t z n Iz t z

c zt

t

C e
e

z

σ
β ω β β

σ β ω β β
σ σ βσ

σ β

−
⎛ ⎛ ⎞− ⎟ ⎟⎜ ⎜ ⎟ ⎟⎜ ⎜+ − − − + −⎟ ⎟⎜ ⎜ ⎟ ⎟⎜ ⎜ ⎟ ⎟+⎝ ⎝ ⎠=

+

⎞

⎠  

The Power of the Pulse is proportional to 

( )

2
2

14 2 2
2

2
( )

2 2
2

1
4 2 2 2

2

( , )

t

t

t z
z

t

t

C e
z t

z

σ
β

σ βσ
ψ

σ β

−
−

+

=

+

. 

Amplification along optical fibers, renders them loss-less medium, 

and the pulse power does not dissipate with z . Alternatively, we 

may take   

2 2
2

4
1

t

zβ

σ
. 

Then,  

2 20 2 2
1 0 0 2 12 2

0

1 1
( ) arctan ( )

2( , ) t t

z z
t z i t z n Iz t z

cz t Ce e

ω β β
β ω β β

σ σψ

⎛ ⎛ ⎞− ⎟ ⎟⎜ ⎜ ⎟ ⎟⎜ ⎜− − − − + −⎟ ⎟⎜ ⎜ ⎟ ⎟⎜ ⎜ ⎟ ⎟⎝ ⎝ ⎠≈
4
tσ

⎞

⎠ . 

Hence, 
2

12

2
( )

2 2( , ) t

t z

z t C e
β

σψ

−
−

≈ , 

and the Gaussian Pulse power is 
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2
12

2
( )

0( ) t

t z

P t P e
β

σ

−
−

= . 

The intensity of the field in an optical fiber is 

( )

eff

P t
I

A
=  

                                                   

2
12

2
( )

0
t

t z

eff

P e

A

β
σ

−
−

=  

where  is the effective area of the fiber’s cross section. effA

Therefore, the phase of  is ( , )z tψ

20 2 2
0 0 2 12 4

0

1
( ) arctan ( )

2
t t

z z
t t z n Iz t z

c

ω β β
ϕ ω β β

σ σ
= − − − + − =  

      

2
12

2
( )

20 0 2 2
0 0 2 12 4

0

1
arctan ( )

2

t

t z

eff t t

P e z z
t z n z t z

c A

β
σω β

ω β β
σ σ

−
−

= − − − + −
β

. 

The frequency of the carrier is 

( ) ttω ϕ= ∂  

       
2

12

2
( )

0 0 2
0 2 12 4

0

4
( ) ( )t

t z

eff t t

P z
n z t z e t

c A

β
σω β

ω β
σ σ

−
−⎛ ⎞⎟⎜ ⎟= − − − + −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

1zβ  

       
2

12

2
( )

0 0 2 1
0 2 2 2

0

( )
4 t

t z

eff t t

P z
n ze

c A

β
σω β

ω
σ σ

−
−⎛ ⎞⎟⎜ −⎟⎜ ⎟⎜= + + ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

t zβ
 

The frequency of the carrier is , only at  the peak of the pulse 0ω

 19



Gauge Institute Journal                                                                                              H. Vic Dannon  

That is, at 

1t zβ= . 

Otherwise, the frequency depends on the sign of  

2
12

2
( )

0 0
2 2

0

4 t

t z

eff t

P z
n ze

c A

β
σω β

σ

−
−

+ 2 . 

The two terms in the sum have opposite signs, because in Optical 

Fibers 

 , 2 0n >

and 

 . 2 0β <

There are three cases 

(I) Group Velocity Dispersion 

If 

2
12

2
( )

0 0 2
2 2

0

4 0t

t z

eff t

P z
n ze

c A

β
σω β

σ

−
−

+ > . 

Then,  

The frequency decreases before the peak of the pulse, and the 

carrier vibrations get dispersed  

The frequency increases beyond the peak of the pulse, and the 

carrier vibrations get compressed. 

(II) Self-Phase Modulation

If 
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2
12

2
( )

0 0 2
2 2

0

4 0t

t z

eff t

P z
n ze

c A

β
σω β

σ

−
−

+ < . 

Then,  

The frequency increases before the peak of the pulse, and the 

carrier vibrations get compressed  

The frequency decreases beyond the peak of the pulse, and the 

carrier vibrations get dispersed. 

(III) Optical Soliton

If 

2
12

2
( )

0 0 2
2 2

0

4 0t

t z

eff t

P z
n ze

c A

β
σω β

σ

−
−

+ = . 

Then,  

The frequency remains the same  before the peak of the pulse, 

and beyond the peak of the pulse.  

0ω

the carrier vibrations dispersion is balanced by their compression. 

We will modify the Non-Linear Schrödinger equation to generate a 

Soliton solution. 
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4.  

Non-Linear Schrodinger Equation 
for Solitons 

 

The condition for the evolution of a Gaussian pulse into an Optical 

Soliton, involves a transformed time 

1

t

t zβ
σ
−

 

where  is the standard deviation of the Gaussian distribution. tσ

Thus, we should expect an optical Soliton time to be of the form 

1t z

T

β−
, 

where T  is the time-width of the Soliton.  

But Soliton width which is not known at this point, can be 

introduced in a natural way after further developments. 

Rather than introduce an unknown T ,we transform the time t  to 

1t zτ β= − . 

Then, the Soliton’s envelope  moves at the group velocity 

1

1
gv β
= , 

The Non-Linear Schrödinger equation 
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2
0 1 0 2 0 0 0 0 2 0 0

1 1
0

2 2z t ttE E i E i n n E Eβ β ω ε∂ + ∂ − ∂ + = , 

will transform to an equation that depends on T .  

The modulating envelope is 

0( , ) ( , )E z t f z τ=  

Then, 

1

0

1

E f z f
z z z

β

τ
τ

−

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ z∂
 

                                              1z f fτβ= ∂ − ∂  

0

0 1

E f z f
t z t

τ
τ

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ t∂
 

                                              fτ= ∂  

                                     
2

0
2

0 1

( ) ( )E f fz
z tt
τ τ τ

τ
∂ ∂ ∂ ∂ ∂∂ ∂

= +
∂ ∂ ∂ ∂∂ t

 

                                               fττ= ∂  

Hence, the equation transforms to 

21

2
0 1 0 2 0 0 0 0 2 0 0

1 1
0

2 2
z

z t tt

f f f f f f

E E i E i n n E E

τ τ ττβ

β β ω ε
∂ − ∂ ∂ ∂

∂ + ∂ − ∂ + =  

That is, 
2

2 0 0 0 2
1 1

0
2 2z f i f i n n f fττβ ω ε∂ − ∂ + = . 
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5.  

The Soliton’s Envelope Equation 

 

The Non-Linear Schrödinger equation 

2
2 0 0 0 2

1 1
0

2 2z f i f i n n f fττβ ω ε∂ − ∂ + = . 

describes the propagation of a wave packet envelope in the optical 

fiber, in a coordinate  system ( , that moves with the pulse peak.   )z τ

Since a Soliton’s envelope does not depend on , a Soliton solution  z

has the form 

( )( , , ) ( ) i zf z a au e φτ τ= , 

where   

                 is the Soliton’s envelope,   . ( )u τ 1t zτ β= −

                 the Soliton’s phase, depends only on z .   ( )zφ

                         is unchanged with time, '( )φ τ

and  

                a  is the maximal amplitude. That is,  

0 ( )u τ< ≤ 1. 

Substituting in the Nonlinear Schrodinger equation, 

( ) ( ) 3 2 ( )
2 0 0 0 2

1 1
( ) '( ) ''( ) 0

2 2
i z i z i zau e i z i au e i a n n u ueφ φτ φ β τ ω ε− + φ = . 
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2 3
2 0 0 0 2

1 1
( ) '( ) ''( ) 0

2 2
u z u a n n uτ φ β τ ω ε− + =  

2 2
2 0 0

1 ''( ) 1
'( )

2 ( ) 2
u

z a
u

τ
φ β ω ε

τ
= − 0 2n n u . 

Thus, both sides equal to a constant α . Hence,  

( )z zφ α= , 
and  

2 2
2 0 0

1 ''( ) 1
2 ( ) 2
u

a n n
u

τ
α β ω ε

τ
= − 0 2u  

Therefore,  

( )2 3
0 0 0 2

2

1
''( ) 2u u a nτ α ω ε

β
= + n u  

is the Soliton’s Envelope Equation. 
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6. 

The Fundamental Soliton solution 

 

To solve the Soliton envelope equation 

( )2 3
0 0 0 2

2

1
''( ) 2u u a nτ α ω ε

β
= + n u , 

multiply it by the integration factor 2 ' . ( )u τ

( )2 3
0 0 0 2

2

1
2 ' '' 4 ' 2 'u u uu a n n u uα ω ε

β
= +  

( ) ( ) ( )2 2 2
0 0 0 2

2

1 1
' 2

2
D u D u a n n D uτ τα ω ε

β

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎟⎜⎝ ⎠
4

τ  

Integrating both sides with respect to , τ

( )2 2 2 4
0 0 0 2 1

2

1 1
' 2

2
u u a n n uα ω ε

β

⎛ ⎞⎟⎜= + + ⎟⎜ ⎟⎟⎜⎝ ⎠
C

0

. 

Assuming that if , then , and , we have  τ → ∞ 'u → 0u →

1 0C = , 
and 

( )2 2 2
0 0 0 2

2

1 1
' 2

2
u u a nα ω ε

β

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎟⎜⎝ ⎠
4n u  

                                     2 2
0 0 0 2

2

1 1
2

2
u a n nα ω ε

β

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎟⎜⎝ ⎠
2u

0

                           

At ,  peaks to . Then, , and the equation 0τ = ( )u τ 1u = 'u =
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becomes  

2
0 0 0 2

2

1 1
0 2

2
a n nα ω ε

β

⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎟⎜⎝ ⎠
 

Hence, 

2
0 0 0 2

1
2

2
a nα ω ε= − n . 

Substituting into the Soliton envelope equation 

( )2 2 2 2
0 0 0 2 0 0 0 2

2

1 1 1
'

2 2
u u a n n a n nω ε ω ε

β

⎛ ⎞⎟⎜= − + ⎟⎜ ⎟⎟⎜⎝ ⎠
2u  

                            ( )2 2
0 0 0 2

2

1
1

2
a n n u uω ε

β
= −

−
2  

In optical Fibers  , and since the maximum of u  is 1 , the 

square root of the right hand side is real positive, and we have  

2 0β <

2
0 0 0 2

2

1

1
' 1

2

T

u a n n u uω ε
β

= −
−

. 

Denoting 

0 0 0 2
2

1 1
2

a n n
T

ω ε
β

≡
−

, 

21
' 1u u
T

= − u , 

where . 0T >

 
2

1

1

du
d
Tu u

τ=
−

. 

Integrating both sides, 
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22

1

1

du
d C

Tu u
τ= +

−
∫ ∫ . 

From Integration Tables, [Spiegel, p.69], 

2

2
1 1

log
u

C
u T

τ+ −
− = + . 

At ,  peaks to . Then, 0τ = ( )u τ 1u =

2

2
1 1 1 0

log
1

C
T

+ −
− = +  

That is, 

20 C= , 
and 

21 1
T

u
e

u

τ
−+ −

= , 

2 21 ( Tu ue
τ

−
− = − 1) , 

                       
22 2 1T Tu e ue
τ τ

− −
= − +  

2
0 ( 1) 2T Tu u e e

τ τ
− −⎡ ⎤

⎢ ⎥= + −⎢ ⎥
⎢ ⎥⎣ ⎦

 

2
( 1) 2T Tu e e

τ τ
− −

+ =  

( )T Tu e e
τ τ

−
+ = 2  

     2

T T

u

e e
τ τ

−
=

+
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      1

cosh
T
τ

=
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

 

                    1
/

cosh gt z v

T

=
⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

 

Since 0 0 0 2
2

1 1
2

a n n
T

ω ε
β

=
−

, 

2

0 0 0 2

21
a
T n

β
ω ε
−

=
n

 ,                                  

and 

2
0 0 0 2

1
4

z a nα ω ε= − n z  

                                            2
22
z

T

β
= . 

Thus, the Fundamental Soliton solution to the Non-linear 

Schrödinger equation is 

2
22 2

0 0 0 2

21 1
( , , )

/
cosh

i z
T

g

f z T e
T n n t z v

T

β
β

τ
ω ε

−−
=

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

. 

The Soliton’s amplitude depends on its width T . 
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Delta Function 
We aim to show that the Fundamental optical Soliton can be 

modeled by a propagating Delta Function. 

The description of the Delta Function as the limit of a Delta 

sequence leads to divergent integrals, and to meaningless equality 

to the inconceivable infinity.   

In the Calculus of Limits, the Delta function is not defined, and its 

power to describe physical singularities is restricted.  

Using infinitesimals, and infinite hyper-real numbers, the Delta 

Function can be defined on the hyper-real line, an infinite 

dimensional line that has room for infinitesimals, and their 

reciprocals, the infinite hyper-reals.   

Then, the Delta function is the whole infinite Delta sequence, and 

serves to model singularities.  

In the next sections, we sum up the main points necessary for the 

definition, and the application of the Delta function 
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7.  

Hyper-real Line 
Each real number α  can be represented by a Cauchy sequence of 

rational numbers,  so that .    1 2 3( , , ,...)r r r nr α→

The constant sequence (  is a constant hyper-real. , , ,...)α α α

In [Dan2] we established that,  

1. Any  totally ordered set of positive, monotonically decreasing 

to zero sequences  constitutes a family of 

infinitesimal hyper-reals.  

1 2 3( , , ,...)ι ι ι

2. The  infinitesimals are smaller than any real number, yet 

strictly greater than zero. 

3. Their reciprocals (
1 2 3

1 1 1, , ,...
ι ι ι ) are the infinite hyper-reals. 

4. The infinite hyper-reals are greater than any real number, 

yet strictly smaller than infinity. 

5.  The infinite hyper-reals with negative signs are smaller 

than any real number, yet strictly greater than −∞ . 

6. The sum of a real number with an infinitesimal is a 

   non-constant hyper-real. 

7. The Hyper-reals are the totality of constant hyper-reals, a 

family of infinitesimals, a family of infinitesimals with 
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negative sign, a family of infinite hyper-reals, a family of 

infinite hyper-reals with negative sign, and non-constant 

hyper-reals. 

8.  The hyper-reals are totally ordered, and aligned along a 

line: the Hyper-real Line. 

9. That line includes the real numbers separated by the non-

constant hyper-reals. Each real number is the center of an 

interval of hyper-reals, that includes no other real number. 

10. In particular, zero is separated from any positive real 

by the infinitesimals, and from any negative real by the 

infinitesimals with negative signs, . dx−

11.  Zero is not an infinitesimal, because zero is not strictly 

greater than zero. 

12. We do not add infinity to the hyper-real line. 

13. The infinitesimals, the infinitesimals with negative 

signs, the infinite hyper-reals, and the infinite hyper-reals 

with negative signs are semi-groups with 

     respect to addition. Neither set includes zero. 

14. The hyper-real line is embedded in , and is not 

homeomorphic to the real line. There is no bi-continuous 

one-one mapping from the hyper-real onto the real line. 

∞

15. In particular, there are no points on the real line that 

can be assigned uniquely to the infinitesimal hyper-reals, or 
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to the infinite hyper-reals, or to the non-constant hyper-

reals. 

16. No neighbourhood of a hyper-real is homeomorphic to 

an  ball.   Therefore, the hyper-real line is not a manifold. n

17. The hyper-real line is totally ordered like a line, but it 

is not spanned by one element, and it is not one-dimensional. 

 

 

 

 

 

 

 

 

 

 

 

 

 33



Gauge Institute Journal                                                                                              H. Vic Dannon  

8. 

Hyper-Real Integral   

In [Dan3], we defined the integral of a Hyper-real Function. 

Let ( )f x  be a hyper-real function on the interval [ , . ]a b

The interval may not be bounded. 

( )f x  may take infinite hyper-real values, and need not be 

bounded. 

At each  

a x≤ ≤ b , 

there is a rectangle with base 
2

[ ,dx dxx x− +
2
], height ( )f x , and area  

( )f x dx . 

We form the Integration Sum of all the areas for the x ’s that 

start at x , and end at x b , a= =

[ , ]

( )
x a b

f x dx
∈
∑ . 

If for any infinitesimal dx , the Integration Sum has the same 

hyper-real value, then ( )f x  is integrable over the interval [ , .  ]a b

Then, we call the Integration Sum the integral of ( )f x  from , 

to x , and denote it by 

x a=

b=

( )
x b

x a

f x dx
=

=
∫ . 
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If the hyper-real is infinite, then it is the integral over  [ , , ]a b

If the hyper-real is finite,  

( )  real part of the hyper-real
x b

x a

f x dx
=

=

=∫ .  

 

8.1   The countability of the Integration Sum 

In [Dan1], we established the equality of all positive infinities: 

We proved that the number of the Natural Numbers,  

Card , equals the number of Real Numbers, ,  and 

we have 

2CardCard =

2 2( ) .... 2 2 ...
CardCardCard Card= = = = = ≡ ∞ . 

In particular, we demonstrated that the real numbers may be 

well-ordered.  

Consequently, there are countably many real numbers in the 

interval [ , , and the Integration Sum has countably many terms. ]a b

While we do not sequence the real numbers in the interval, the 

summation takes place over countably many ( )f x dx . 

 

The Lower Integral is the Integration Sum where ( )f x  is replaced 

by its lowest value on each interval  
2 2

[ ,dx dxx x− + ] 
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8.2                              
2 2[ , ]

inf ( )
dx dxx t xx a b

f t dx
− ≤ ≤ +∈

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑  

  

The Upper Integral is the Integration Sum where ( )f x  is replaced 

by its largest value on each interval  
2 2

[ ,dx dxx x− + ] 

8.3                                
2 2[ , ]

sup ( )
dx dxx t xx a b

f t dx
− ≤ ≤ +∈

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∑  

 

If the integral  is a finite hyper-real, we have 

8.4  A hyper-real function has a finite integral if and only if its 

upper integral and its lower integral are finite, and differ by an  

infinitesimal. 
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9. 

Delta Function   
In [Dan5], we defined the Delta Function, and established its 

properties 

1. The Delta Function is a hyper-real function defined from the 

hyper-real line into the set of two hyper-reals 
1

0,
dx

⎧ ⎫⎪⎪⎨⎪ ⎪⎪ ⎪⎩ ⎭

⎪⎪⎬.  The 

hyper-real  is the sequence  0 0,0, 0,... .  The infinite hyper-

real  1
dx

 depends on our choice of dx .   

2. We will usually choose the family of infinitesimals that is 

spanned by the sequences 
1
n

,
2

1

n
,

3

1

n
,… It is a 

semigroup with respect to vector addition, and includes all 

the scalar multiples of the generating sequences that are 

non-zero. That is, the family includes infinitesimals with 

negative sign.   Therefore,  1
dx

  will mean the sequence n .  

Alternatively, we may choose the family spanned by the 

sequences 
1

2n
,

1

3n
,

1

4n
,… Then, 1

dx
  will mean the 

sequence 2n .   Once we determined the basic infinitesimal 
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dx , we will use it in the Infinite Riemann Sum that defines 

an Integral in Infinitesimal Calculus.  

3. The Delta Function is strictly smaller than ∞  

4. We define,    
2 2
,

1
( ) ( )dx dxx x

dx
δ χ⎡ ⎤−⎢ ⎥⎣ ⎦

≡ ,    

             where   
2 2

2 2
,

1, ,
( )

0, otherwise
dx dx

dx dxx
xχ⎡ ⎤−⎢ ⎥⎣ ⎦

⎧ ⎡ ⎤⎪ ∈ −⎢ ⎥⎪ ⎣ ⎦= ⎨⎪⎪⎩
. 

5. Hence,  

 for ,   0x < ( ) 0xδ =

 at 
2
dx

x = − ,   jumps from   to ( )xδ 0
1
dx

,  

 for     
2 2

,dx dxx ⎡ ⎤∈ −⎢ ⎥⎣ ⎦ ,   
1

( )x
dx

δ = . 

 at   ,     0x =
1

(0)
dx

δ =  

 at  
2
dx

x = ,   drops from ( )xδ
1
dx

 to . 0

 for ,  . 0x > ( ) 0xδ =

  ( ) 0x xδ =

6. If 1
n

dx = ,  1 1 1 1 1 1
2 2 4 4 6 6

[ , ] [ , ] [ , ]( ) ( ),2 ( ), 3 ( )...x x xδ χ χ χ− − −= x  

7.  If 2
n

dx = ,  
2 2 2

1 2 3
( ) , , ,...

2 cosh 2cosh 2 2cosh 3
x

x x x
δ =  

8. If 1
n

dx = ,  2 3
[0, ) [0, ) [0, )( ) ,2 , 3 ,...x x xx e e eδ χ χ χ− − −

∞ ∞ ∞=  
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9.         . ( ) 1
x

x

x dxδ
=∞

=−∞

=∫
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10. 

The Fourier Transform 

In [Dan6], we defined the Fourier Transform and established its 

properties 

1.    { }( ) 1xδ =F

2.  =  the inverse Fourier Transform of the unit function 1  ( )xδ

                   1
2

i xe d
ω

ω

ω

ω
π

=∞

=−∞

= ∫  

                   ,            2 ixe d
ν

π

ν

ν
=∞

=−∞

= ∫ 2ω π= ν

3. 
0

1
2

i x

x

e d
dx

ω
ω

ω

ω
π

=∞

=−∞ =

=∫
1

=  an infinite hyper-real 

                    
0

0i x

x

e d
ω

ω

ω

ω
=∞

=−∞ ≠

=∫  

4. Fourier Integral Theorem 

     1
( ) ( )

2

k
ik ikx

k

f x f e
ξ

ξ

ξ

ξ ξ
π

=∞ =∞
−

=−∞ =−∞

⎛ ⎞⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∫ ∫ d e dk   

     does not hold in the Calculus of Limits, under any  

     conditions.  
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5. Fourier Integral Theorem in Infinitesimal Calculus      

         If ( )f x  is hyper-real function, 

         Then,  

 the Fourier Integral Theorem holds. 

 ( )
x

i x

x

f x e dxα
=∞

−

=−∞
∫  converges to  ( )F α

 1
( )

2
i xF e d

α
α

α

α
π

=∞
−

=−∞
∫ α  converges to ( )f x  
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11. 

The Laplace Transform   

 

In [Dan7], we have shown that 

1. The Delta function , for  is represented by Sequence  

. 

( )tδ 0t ≥

[0, )
( ) ( )nt
n t ne tδ χ

∞

−=

2. If 1
ni n
= ,   

[0, ) [0, ) [0, )

2 3( ) ( ),2 ( ), 3 ( ),...t t tx e t e t e tδ χ χ χ
∞ ∞ ∞

− − −=     

3.  { }( ) 1tδ =L

4.   the inverse Laplace Transform of the unit function 1  ( )tδ =

                 1
2

s i
st

s i

e ds
iπ

= ∞

=− ∞

= ∫ . 

5. 
0

1
2

s i
st

s i t

e ds
i d

γ

γ
π

= + ∞

= − ∞ =

=∫
1
t
=  an infinite hyper-real 

               
0

0
s i

st

s i t

e ds
γ

γ

= + ∞

= − ∞ ≠

=∫ . 

6. Laplace Integral Theorem 

     If ( )f t  is hyper-real function, 

          Then,  

 the Laplace Integral Theorem holds. 
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0

1
( ) ( )

2

s i
st s

s i

f t e e f
i

γ τ
τ

γ τ

τ τ
π

= + ∞ =∞
−

= − ∞ =

⎛ ⎞⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∫ ∫ d ds  

  , converges to  
0

( )
t

st

t

e f t dt
=∞

−

=
∫ ( )F s

  1
( )

2

s i
st

s i

e F s ds
i

γ

γ
π

= + ∞

= − ∞
∫  converges to ( )f t . 
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12.  

Pulse Compression and Delta 

Pulse Compression is used to generate Optical Solitons, with 

narrower width T , and larger amplitudes proportional to 1
T

  that 

are used to generate even more compressed Solitons. 

An infinite sequence of compressed pulses with indefinitely 

narrowing widths and growing amplitudes constitutes a Delta 

function. 

The narrowing widths include less carrier cycles, and require 

higher carrier frequencies.  At X-ray frequencies the laser mirrors 

have to be replaced by dielectric mirrors, and as the frequency 

increases, at Attosecond (Atto=10-18 ) pulses, no mirrors will do, 

and a different compression method has to be applied. 

Physically, such Delta Pulse Sequence is unattainable.   

However, similarly to considering the sizes of a charge or a point 

light source as infinitesimal and representing them by a Delta 

function, we shall ignore the physical  limitations on realizing an 

ideal infinitesimal-width Optical Soliton, and model the sequence 

of narrowing Solitons by a Delta function. 
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12.1  Pulse Width, and Delta 

A system that combines dispersion with self-phase modulation 

will generate a narrower output pulse.   

In [Siegman, p.393]  

an input pulse of 5,900 secf , (femto=10-15 ) 

enters a 3 me  optical  fiber, and is broadened to   ter

a pulse of 10,000  secf . 

That pulse enters a diffraction grating that compresses it into  

an output pulse of  200 secf . 

That pulse enters a 0.55 me  optical fiber, followed by a 

diffraction grating, that compresses it into 

ter

an output pulse of  90 secf . 

Pulses of  90  generated in a Dye laser have been compressed 

to 30 

secf

secf -the shortest width attained in 1986. 

A Titanium-Sapphire laser [W-1] generates pulses in the range of 

100  secf , down to 10 secf . The shortest width attained in 1999 

was 5.5 . secf

In 2008, 2.5 secf  pulses, containing only one or two cycles of the 

carrier, were used in the [W-3] experiment.  

Narrower pulses were generated, but not in optical fibers, and not 

as Solitons with amplitude that grows as the width narrows.   
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[W-2] describes the evolution up to 2008, of Ultrashort Pulses into 

the Attosecond range (Atto=10-18 ). 

 
Evolution of ultrashort light pulses up to 2008. (from [W-2])            

 

The Attosecond flushes were attained, by firing ultrashort laser 

pulses into a cloud of neon gas, generating carrier in the extreme 

ultraviolet range. 

In [W-2] such Attosecond flushes from Argon, were used to 

stroboscope-light and film the motion of an electron, after it was 

separated from an atom, in time period of a single carrier cycle.    

By [W-3],  the shortest such flush in 2011 is 80 Attoseconds. 

In Comparison, an electron circles the nucleus in 150 Attosecond. 

 

12.2   Pulse Power, and Delta 

By [W-6], A carrier wave from an Argon or Nd:YVO4 laser with 

average output power of 0.5 to 1.5 Watts, pumps a Titanium-

sapphire laser of mode-locked oscillator type.  
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The Ti:Sapphire oscillator generates pulses with duration as short 

as 5 secf .   

According to [Weiner,p.405], at 100 secf ,  

the peak power of the pulse is 104 Watts.  

This Corresponds to maximum intensity 108 W/m2 =1012 W/cm2. 

By [W-6], this pulse is supplied to a Titanium-sapphire laser of 

Chirped-pulse amplifier type, designed to withstand the damaging 

power of the pulse. 

The Ti:Sapphire laser amplifier may use Chirped mirrors [W-7] to 

guide the beam several times through the crystal, while keeping 

the pulse width below the damage threshold, or it may use optical 

switches, to insert the pulse in the cavity, and retrieve it later. 

The Ti:Sapphire amplifier generates pulses with duration of 20 to 

100 secf  with energy of 5 mJou .  ls

At 100 secf , the peak power of the pulse is 50 G . An 

electric power plant peaks to 1 GW. 

egaWatts

This corresponds to maximum intensity  

(25)1020 W/m2 =(25)1024 W/cm2

Thus, the Delta function is suitable to describe short energetic 

Optical Fiber Solitons.     
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13. 

Solitons and Delta Sequence   

 

13.1 Soliton’s Delta  

The Soliton  

2
22 2

0 0 0 2

21 1
( , , )

/
cosh

i z
T

g

f z t T e
T n n t z v

T

β
β

ω ε

−−
=

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

, 

has the envelope  

2

0 0 0 2

21 1
/

cosh gT n n t z v

T

β
ω ε
−

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

, 

where 

                       
(3)

2 2
0 0 0

3
4

n
c n

χ

ε
= , 

                       ( 21
0 0 2 0 0 02

( , )n E n n c n Eω ≈ + )0ε  is the refractive index, 

                       0
0

0

( , )n E
c

ω
β ω≡ ,   

                       
0

0

2

2 2

0E
ω ω

β
β

ω =
=

∂
≡

∂
,  

                        is the envelope velocity,   gv

                        T  is the Soliton’s width.    
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Denote 

2

0 0 0 2

2

n n

β
γ

ω ε
−

≡ , 

                                                  ,  / gt z vτ ≡ −

                                                  T d . z=

The Delta function representing this envelope is the Hyper-real 

function 
1 1

/
cosh gdz t z v

dz

γ
⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

. 

For 
1

dz
n

= ,  this Delta function is represented by the sequence 

( ) ( ) ( )
2 3

, ,
cosh / cosh 2 / cosh 3 /g gt z v t z v t z v

γ γ γ
− − −

,...
g

 

 

13.2         Each    1
( )

coshn
n

n
δ τ

π τ
=     

 has the  sifting property   ( ) 1n d
τ

τ

δ τ τ
=∞

=−∞

=∫

 is continuous 

 peaks at  to  0τ = (0)n
n

δ
π

=         

Proof:     

By [Spiegel, p.88], 
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1 2
arctan( )

cosh
nn n

d e
n n

τ
ττ
τ

τ

τ
π τ π

=∞
=∞

=−∞
=−∞

=∫  

                                               

                               
/2 0

2
[arctan( ) arctan(0)]

π
π

= ∞ −  

                               .  1=

 

Thus, the sequence represents the hyper-real Delta Function 

13.3             
1 2 3

( ) , , ,...
cosh cosh2 cosh 3

δ τ
τ τ τ

=  

 
 

  plots in Maple, the 50th component, 
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  plots in Maple the 200th   component, 
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